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Solving equations (3) and (4) for _(s) and @(s) gives the Laplace

transform of y(x) and 0(x), respectively, as

9

(s3 + s5_2 + (s2 + 5)Y3 + poI - _e-SZl_'(Zl - O)- O'<Zl + 0)_

_(s) = q(s)

_(_+_]o'°_[_,,,[_-o]-_,,,b_+o)3
g(s)

(5)

and

'q(s)

+t_-_4)o-_<o,(_.o)-o,(_+o)3
q(s)

(6)

where

q(s) = s6 + 5s4- 2 +7!s-

Golandand Luke (reference 4) showed that y(x) and O(x) could be

written as a converging series by expanding the transforms (5) and (6)

in terms of symmetric polynomials of the squares of the roots of q(s)

and applying the inverse transform. A discussion of this expansion is

given in section 4 of appendix A where it is shown that 1/q(s) can be

written as

where

TO = i

T1 = -5

T2 =62 + a

T =-53- a5-_7
3

T(TY 7 s_"-_ (7)
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For n_ 3,

Tn - "_Tn-i+ _n-a + (_ - _)Tn-3 (8)

When the series expansion of i/q(s), equation (_), is substituted

into equations (9) and (6) the transforms _(s) and 8(s) become sums of
infinite series with terms of two distinct types} that is, terms of types

A

and

Be- sx°

sm

where m is a positive integer.

A
The inverse Laplace transform of --

reference _for x > 0 is

(see pair no. 3, P. 299, of

L I m}= (m- i):

and the inverse Laplace transform of

of reference 9) for x >Xo____O is

Be- sxO

sm

[Be_____x_ Xo)_:I
L-I = B(_m - 11

(9)

(see pair no. 63, p. 298,

(io)
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SUMMARY

A method is presented for the calculation of the flutter speed of a

uniform wing carrying an arbitrarily placed concentrated mass. The

method, an extension of recently published work by Goland and Luke,

involves the solution of the differential equations of motion of the

wing at flutter speed and therefore does not require the assumption of

specific normal modes of vibration. The order of the flutter determi-

naut to be solved by this method depends upon the order of the system

of differential equations and not upon the number of modes of vibration

involve d •

The differential equations are solved by operational methods and

a brief discussion of operational methods as applied to boundary-value

problems is included in one of two appendixes. A comparison is made

with experiment for a wlngwith a large eccentrically mounted weight

and good agreement is obtained. Sample calculations are presented to

illustrate the method; and curves of amplitudes of displacement, torque,

and shear for a particular case are compared with correspondingcurves

computed from the first uncoupled normal modes.

For convenience, the method employs two-dimenslonal air forces

and could be extended to apply to unlformwlngs with any number of

arbitrarily placed concentrated weights, one of which might be considered

as a fuselage. The location of such masses as engines, fuel tanks, and

landing-gear installations might be used to advantage in increasing the

flutter speed of a given wing.

INTRODUCTION

The common procedures in flutter analysis of an airplane wing

involve many simplifying assumptions. In particular the degrees of

freedom of the wing are usually determined by choosing the first few

normal modes of the structure, and the wing motion at flutter is then

described in terms of these chosen modes. This approach of employing
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prescribed modesis often adapted to the Rayleigh type analysis of
vibration and maybe referred to as "Rayleigh type analysis. In
specific calculations with this method the amount of work regulred is

oproportional to the numberof normal modesinvolved. In particularj the
order of the flutter determinant that must be solved depends directly
upon the number of modesinvolved. For simple wings3 without concen-
trated masses3 the Rayleigh type analysis usually yields satisfactory
results with not more than two or three normalmodes. However_if the
wing carries concentrated masses3 such as enginej fuel tank, or landing-
gear installations, sBmany normal modesmaybe regulred to obtain satis-
factory results that the Rayleigh method maynot be the _ost feasible
method.

In cases where manydegrees of freedom are involved the most logical
procedure would be to treat the system of differential eguations of
motion of the wing rather than to choose specific modes. This method is
in general ve_j difficult and tedious to earry through_ although it has
the advantage that the order of the flutter determinant that must be
solved depends only upon the order of the system of differential eguations
and not upon the number of modesof vibration involved.

As early as 1929 KGssner (reference i) used the differential
eguation approach to formulate the problem in the form of an integro-
differential eguatlon for a wing of general plan form. K_ssner set up
someparticular examplesand suggested a method of solution by a process
of iteration. This method was not followed up until during the war
when somerelated work was undertaken in Germanybut not finished.
Wielandt (reference 2) has recently made contributions to the treatment
of nonself-adJoint differential equations by iterative processes° In
the light of these contributions perhaps the problem of flutter analysis
as proposed by K_ssner warrants further investigation.

Recently_ Goland (reference 3) applied the differential-eguation
method to a uniform cantilever wing and was able to carry out the
solution of the flutter problem by straightforward methods. In refer-
ence 4 Goland and Luke extended the solution of the problem of the
uniform wlng to include a unlformwing carrying a fuselage at the
semlspan and concentrated weights at the tips. Goland and Luke made
use of the Laplace transform to solve the differential eguatlons by
operational methods for both the symmetric and antisymmetrlc types of
flutter. In both references 3 and 4, the objective was to compare
flutter speeds and certain flutter parameters for specific uniform
wings calculated by the differential-equations method with the same
guantltles calculated by the Rayleigh method when only t_e fundamental
bending and torsion modeswere used in the calculations. Fairly close
agreementbetween results calculated by the two methods were obtained
in both references 3 and 4. No comparison with experiment, however,
was madein either case.

The results of a systematic series of flutter tests madeto
determine the effect of concentrated weights and concentrated weight
positions on the flutter speed of a uniform cantilever wing are reported
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in reference 5. After these experiments were finished, an attempt was made
to compare the results with a theoretical analysis by the Rayleigh method.
In cases where the mass of the weight was of the sameorder as that of the
wing and placed so that the distance between its center of gravity and the
elastic axis of the wing was a considerable fraction of the wing chord,
however_ several normal modeswould have to be employed and there was no
way of knowing in advance Just what number should be used. Because of
this difficulty and because the wing was a uniform wing, the most extreme
case was chosen from reference 5 and investigated by the differential-
equations method by following an extended procedure of Goland and Luke.
The purpose of this paper is to report the results of this investigation.

The paper consists of the main text and two appendixes. In the
main text the differential-equation method is set up for any uniform
cantilever wing with an arbitrarily placed concentrated weight and the
solution, based on an extension of the m2thod used by Goland and Luke, is
developed. Application is then madeto a particular wing-weight system
used in reference 5, and comparison with experimental results is given.
The mass of the weight (weight labeled 7a in reference 5) was about
92 percent of the mass of the wing and at each spanwise weight position
the weight was placed so that its center of gravity was about 0.41 chord
forward of the elastic axis of the wing. (It maybe mentioned for the
sake of comparison that in the numerical example treated in reference 4,
the mass of the weight was only 39 percent of the mass of the wing and
placed 0ol chord behind the elastic axis of the wing.) The geometric
aspect ratio of the wing was 6, which was considered large enough to
warrant the use of two-dimensional air forces without aspect-ratio
corrections for oscillating instability (not necessarily so for the
divergent type of instability (see reference 6)). One other simpli-
fication was the omission of terms due to structural damping. The
computedresults agree remarkably well with experimental results,
particularly in regard to trends.

In appendix A the method used by Goland and Luke, which includes
the derivation of the differential equations, for a wing carrying a tip
weight is outlined and extended to a wing carrying an arbitrarily placed
weight. A somewhatgeneral but brief discussion of operational methods
of solving boundary-value problems is included and illustrated with a
simple example for readers who might be interested but are not familiar
with the operational approach.

In appendix B the derivation of the flutter determinant is com-
pleted and a method of solving the determinant is illustrated by a
detailed calculation of the flutter speed for the wing and one weight
position of the wing-weight combination discussed in the test. As a
final topic in this appendix the solution obtained for the flutter
determinant is used with the solutions of the differential equations to
calculate the amplitudes and phase angles of the deflection curves of
the wlng-weight system at flutter speed.
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SYMBOLS

(The symbols are given in terms of a consistent set of units that
are convenient for the computations in this paper. They can be converted
to any desired set of units by proper attention to the dimensions
involved.)

a nondimensional distance of elastic axis from midchord

measured in half-chords, positive for positions of
elastic axis behind midchord

b wing half-chord, feet

el chordwise distance of wing center of gravity from

elastic axis, positive for center of gravity behind

elastic axis, feet

e2 chordwise distance of weight center of gravity from

elastic axis, positive for center of gravity behind

elastic axis, feet

g

I

I w

gravitational constant, feet per second per second

mass moment of inertia of uniform wing per unit of

spanwise length, referred to wing elastic axis,

pound-second 2 (MK12)

mass moment of inertia of weight referred to wing

elastic axis, foot-pound-second 2

K1 radius of gyration of wing sections about wing elastic

axis, feet

K2

k

radius of gyration of weight about elastic axis, feet

reduced-frequency parameter / ko
',, V /

L

Ly + iLy' = _pb2Lh

Le + iLs' = _pbBIL a -L h<1 + a_I

Z semisPan of wing, feet

aerodynamic lift force per unit of spanwise length

_i location of weight measured from wlng root, feet



NACATN No. 1848 5

Lh,L_MhjM_

M
about elastic axis

W

m

Ww

N

T

RI,R2,R 3

S

t

T n

V o

v

V

X

Y(x,t)

El b

CJ

aerodynamic coefficients as tabulated in reference 7

aerodynamic moment per unit of spanwise length taken

weight of wing model# pounds

mass of wing per unit length

weight of concentrated weight, pounds

transverse shear force in wing at station x

torsional moment in wing at station x

roots of cubic equation

operator used in Laplace transformation

time coordinate

sum of all symmetric polynomial functions in RI, R2, P_3

which are of degree n

experimental flutter speed for wing without weight,

feet per second

flutter speed_ feet per second

reduced flutter speed

spanwise coordinate measured from wing root

general mode shape function in bending

mode shape function in bending after assumption of

harmonic motion (Yl(X)+ iY2(X))

flexural rigidity of uniform wing, pound-feet 2

torsional rigidity of uniform wing_ pound-feet 2
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K

0

A

e(x,t)

e(x)

o2G ,)a =_b + Ly + iLy

,)= eI + L0 + iL0

7 _-_2{mel + iMy)= GJ\ ± My + '

mass ratio _@_)

air density, slugs per cubic foot

complex value of determinant

value of & when real and imaginary parts are equal

general mode shape function in torsion

mode shape function in torsion after assumption of

harmonic motion _02(x) + i03(x))

circular frequency at flutter, radians per second

f frequency, cycles per second

ANALYSIS

As mentioned in the introduction the differential equations that

govern the motion of a uniform wing at flutter speed, as derived by

Goland in reference 3, and a method of solving the equations for a
uniform cantilever wing carrying an arbitrarily placed weight, based on

a method developed by Goland and Luke in reference 4, are discussed in

appendix A. This section, therefore, is devoted to a brief discussion

of the differential equations of motion of the wing, the boundary condi-

tions, solution of the boundary-value problem by means of the Laplace

transform, and the solution of the flutter determinant.

The differential equations and boundary conditions that govern

the motion# at flutter speed, of a cantilever wing of length _ with
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a concentrated weight placed _i units along the span from the root

section and e2 units forward of the elastic axis of the wing, as derived

in appendix A, are

ytV(x)- _[x) - _0(x)= 0 (l)

e"(x) + 7y(x)+ _(x) = 0 (2)

(a) y(0) = y'(0) = e(o) -- o

(b)

(o)

(d) .

m:by''(_) = S'rbY'''(Z) = GJe'(_) = 0

EIb[Y"'('l- 0)- Y"'('I + 0_ - _Wco2EY('I) + e2e('l_]

where

co2

s = _\r + N + _-e

and where y(x) is the displacement of a chordwlse element of the elastic

axis of the wing at span position x due to bending_ e(x) is the corre-

sponding displacement due to torsion; primes associated with y and e

Indicate differentiation with respect to x; EIb is the flexural rigidity
Ww

of the wing_ GJ is the torsional rigidity of the wing_ -_ is mass of the

weight_ m is mass per unit length of wing; and ¢ is the circular

frequency of bending and torsion at flutter. In condition (c) the

notation y'' '(Z1 - 0) indicates that y'''(x) is to have the value that

it approaches as x-->Z 1 from the inboard side of the weight

and y''T(Z 1 + 0) indicates that y'''(x) is to have the value that it

approaches as x--_I 1 from the outboard side of the weight. Similar

meanings are given to e'(_l - o) and e'(_l + 0).
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The quantities Ly + iLF' , I_ + il_', My + LMy' and Me+ iMe'
can be written in terms of tabulated quantities as follows:

Ly + iLy' = _pb2Lh

Le + il_' = _pb3_-Lh(l + a)_

In reference 7 the values of Lh, L_, Mh_ and M_ are expressed in terms
of Theodorsen's F and G functions of reference 8 and tabulated for

various values of the reduced speed v/b_.

The root conditions (a) and the boundary conditions (b), of the

boundary-value problem, are the usual conditions that must be imposed

upon the equations of a vibrating cantilever beam (or wing). Condi-

tions (c) and (d) stipulate discontinuities of determinable magnitudes

in transverse shearing force and torque, respectively.

Applying the Laplace transform (see appendix A)

e-SXf(x)_ : _(s)

to equations (i) and (2) and making use of conditions (a), (c), and (d)

gives

s4_(s) Y3 + e'Sh[Y'"(Zl- o) - y'"(Zl+ o)]- _(8) - _(s) : osY2

(3)

and

2_(s) - eI + e-SZ_e'(_1 - o) - e'(u + o)] + _(s) + 79(s) = o (4)

where

Y2 = _''(o)

Y3 = y'"(O)

% --o'(o)
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and

oo 2n+l

0(x) = 01 (2n + 1).t
n=O

O0

Tn x2n+4 _--- Tn x2n+5

7Y2 (2n + 4) : wY3 _ (2n + 5),

n=O n=0

Tnx2n+ 5
- elm (2n + 5).v

n=O

+
e'(Z 1 - O) - 8'(_ 1 + (2n + 5) I

n=O

_ / _ h2n+l -1

_- Tn\X- _i/ J/

(an+ l)'

+ 7_Y" v o__Tn( x- _i) 2n*5_l - O_ - Y'''( _1 + _ (2n + 5) .I
(12)

where in both equation (ii) and equation (12) the terms involving (x- _i>

are to be considered as zero when x = _i"

Equations (L1) and (12) are general expressions for the amplitudes

or displacements of a point x of th8 elastic axis of a uniform wing

vibrating in bending and torsion under the conditions of flutter with an

arbitrarily placed concentrated weight. When the weight is concentrated

at the wing tip the equations correspond to those obtained by Goland

except for a difference in root conditions. When the weight is con-

centrated at the root (or if the mass of the weight is reduced to zero)

the equations reduce to those for a uniform cantilever wing. These

equations may appear rather formidable in their present form} however,

only the first few terms of each sumnation seem necessary for most cases.

In the derivation of the flutter determinant in appendix B it is

shown that since terms involving (x - Zl) drop out of both equation (ll)

and equation (12) at x = _l, the values of _(Zl) and e(_l) can be

obtained from the terms not involving _ - _. Then, by making use of

conditions (c) and (d) again, linear expression in Y2, Y3, and 81 can

be substituted for the bracketed expressions

!
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For n_ 3,

Tn = -STn_ 1 + C_n_2 + (uS - _7)Tn. 3 (8)

When the series expansion of i/q(s), equation (_), is substituted
into equations (5) and (6) the transforms _(s) and e(s) become sums of

infinite series with terms of two distinct types} that is, terms of types

A

_m

and

Be-SXo

sm

where m is a positive integer.

The inverse Laplace transform of

reference 9)for x > 0 is

A (see pair no. 3, P. 295, of
sm

L = (m- I).'

and the inverse Laplace transform of

of reference 9) for x >Xo_0 is

Be-SXo

S m

L.ifBe SXo_ B(x - Xo) m-I
= - (m - i):

(9)

(see pair no. 63, p. 298,

(io)



NACA TN No. 1848 ll

When the expression for i/q(s) from equation (7) is substituted into

equations (5) and (6) and the inverse transforms is applied 3 the following
series expressions of y(x) and 8(x) can be obtained:

Y2In___ 2n+2

Tnx

y(x) = (2n + 2)*. n__ Tnx Tn 2n+5+ 5 (2n + 4): + Y3 (2n + 5) :

L n=0

_ Tn x2n+3 Tnx2n+5
+ (2n + 3) I. + @l_ (2n + 5) t.

n=O n--O

-_I 8_(ZI" O) - 8'(ZI + 0)] n__ Tn(x-ll)2n+5(2n+ 5):

- [y'''(Z 1 - O) - Y'''(_l + 0 5 (2n + 9) I.

n=O

+

Tn(X - Z1)2n+31(2n + 3) ,_
n=0

(ll)
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and

2n+l

0(x) = 01 (2n + 1).I
n=O

Tn x2n+4 Tn2n+5
7Y2 (2n + 4)' 7Y3 (_n +'_

n=O n=0

f Tnx2n+ 5
- 01_ (2n + 5).l

n=0

+
I 01 Ic_TnQX-(2n +_1_2n+55).I

e'(Zl - o) - e'(Zz +

n=O

/ . '_2n+l
_ - '1/ , J2____ ,'o_ + -,_v

n= 0 k,-_ .L/ •

,, 0)I _-- Tn(X - 'i) 2n+5<Zl" O_" Y '_]i + n_ (2n + 5):
(12)

where in both equation (Ii) and equation (12) the terms involving Ix - ZIJ
are to be considered as zero when x = _i"

Equations (ll) and (12) are general expressions for the amplitudes

or displacement of a point x of the elastic axis of a uniform wing

vibrating in bending and torsion under the conditions of flutter with an

arbitrarily placed concentrated weight. When the weight is concentrated

at the wing tip the equations correspond to those obtained by Goland

except for a difference in root conditions. When the weight is con-

centrated at the root (or if the mass of the weight is reduced to zero)

the equations reduce to those for a uniform cantilever wing. These

equations may appear rather formidable in their present form; however,

only the first few terms of each summation seem necessary for most cases.

In the derivation of the flutter determinant in appendix B it is

shown that since terms involving (x - _l) drop out of both equation (ll)

and equation (12) at x = _l, the values of y(Zl) and 0(Zl) can be

obtained from the terms not involving (x - Z_. Then, by making use of

conditions (c) and (d) again 3 linear expression in Y2, Y3, and 01 can

be substituted for the bracketed expressions
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and

After the substitutions are made, equations (ll) and (12) will contain
only the three undetermined coefficients Y2, Y3' and eI for any
particular wing-weight system of the type under consideration. Observe
that conditions (b) have not yet been used. If these conditions are
now imposedupon the equations, there is obtained a system of three
linear homogeneousequations in Y2, Y3, and eI that maybe written
for reference as

• AiY2 + BiY3 + Ciel = o (13)

where i = I, 2, and 3.

The condition that a system of equations such as equations (13) have

solutions other than the trivial solution

Y2 = Y3 = el = 0

is that the determinant of the coefficients Ai, Bi, and Ci vanish

(reference lO). This corresponds to the border-line condition between

damped (stable) and undamped (unstable) oscillations or to the point at

which flutter occurs. It will be noted that the order of this determi-

nant depends only on the order of the system of differential equations.

The actual coefficients corresponding to Ai, Bi, and C i are

complex functions of the frequency _, the reduced flutter speed v/b_,

and certain determinable characteristics of the wing-weight system. The

true flutter speed is easily calculated when corresponding values of

and v/bm are known. These quantities may therefore be considered as

(the only) variable parameters in the determinant of coefficients and

the problem of finding the true flutter speed is reduced to that of

finding corresponding values of these parameters that cause the determi-

nant 3 hereinafter called the flutter determinant, to vanish. If v is

set equal to zero the air forces drop out and the resulting determinant

gives the coupled modes of vibration of the wing in still air. On the

other han_if _ is set equal to zero the nonoscillatory or divergence

condition is obtained.

Several ways of solving the flutter determinant axle mentioned in

reference 6. Although more informative methods exist 3 a graphical method

was adopted for the present work. For example, a value is assigned to

one parameter, preferably v/b_} the flutter determinant is then evaluated

for this value of v/b_ and several values of the other parameter _.

The values of the flutter determinant obtained in this manner are complex

numbers and if the real and imaginary parts of a sufficient number of

determinant values are separately plotted 8gainst e, th_ point or points
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where the real and imaginary parts are equal are obtained. If this
process for other values of v/b_ is repeated, a locus of determinant
values with equal real and imaginary parts can be plotted against
both v/b_ and _. Whenenough points are determined these plots give
the values of v/b_ and _ that cause the determinant to vanish.

An illustration of the process of solving the flutter determinant
as described in the preceding paragraph is given in appendix B which
contains the complete solution of the determinant for one weight position
of the particular wing-weight system described in the section entitled
"Application to a Specific Wing-Weight System." In general, when solving
the flutter determinant by the preceding method, if the assumedvalues
of v/b_ and _ are in the neighborhood of +heir true values, only a few
points need be computedto obtain a solution. In the _bsence of experimental
values of these parameters and in view of the work involved in determining
other parameters that depend on v/ko_ it will be found advisable to use
simplified methods to obtain approximate values with which to start the
solution.

APPLICATIONTOA SPECIFICWING-WEIGHTSYSTem4

Attention is now turned to the application of the boundary-value
problem discussed in the foregoing section to a specific problem. The
wing-weight system that has been analyzed consists of a particular
unifor_ cantilever wing and weight combination described in reference 5.
The weight was considered as concentrated at different specified span
positions but always at about 0.41 chord forward of the elastic axis

of the wing. This weight was selected because of its high'mass compared
to that of the wing and because of the large eccentricity due to the
distance between its center of gravity and the elastic axis of the wing.
Furthermor_ by using only the fundamental modes, first bending and first
torsion, the Rayleigh type analysis had failed to give any reasonable
results for this particular wing-weight combination. Pertinent data,
based on measuredcharacteristics of the wing as taken from reference 5,
with the units in feet and pounds are

Chord, feet .......................... 2/3

.................... 4Aspect ratio ................... 6

Taper ratio ......................... i
Airfoil section ...................... NACA 16-010

W, pounds • . "2 ........................
I, pound-second ..................... , •

EIb, pound- feet _ .......................

GJ, pound-feet ? ...................

1/_ (standard air, no wei_t) .................

el, feet ...........................

3.48
0 .OOO8O

977 .o8
480.56

32 .6

0.013
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and, based on measuredcharacteristics of the weight, are

Ww, pounds ........................
e2, feet ..........................
Iw foot-pound-second 2

3.182
°O°2728

0.013625

Calculation of the flutter parameters have been made for the wing

without the weight and for the wing with the weight at seven different

positions. The calculated results are compared with experimental results

in figure 1 and in the following table:

Calc ulate d Experimental

ZI e2

(in.) (ft)

_.___

ii -0.2728

17 -.2728

3o -.2728
45 - •2728

46 - .2728

48 - .2728

f

(cp )

25.27
19.22,
28.04
30.68

25.67
24.87
23.60

6.29

8.23

6.93

8.18

7.45
7.06

6 .o7

(fps)

333

331

4o7

526

4oi

368
3OO

f

(cps)

22 .i

17.4

_6.8
(b)
(b)
21.8

21.4

7.22
8.88
6.8l
(b)
(b)
8.06
7.14

V

(fps)

33_
324
382
(b)
(b)
368
32O

alt is found in reference 5 that good flutter records for this wing-weight

system were obtained for several spanwise weight positions between the

root section and a point 17 inches from the root section; but with the

weight at 17 inches from the root section the wing appeared to diverge.

However, the oscillograph records for this case showed two possible flutter

points, one corresponding to a frequency of 16.3 cps and another corre-

sponding to a frequency of 26.8 cps (only the first of these is recorded

in reference 5). When the weight was moved farther outward from this

point, definite divergence was noted until the weight was at a point
46 inches from the root section. At this point and from this point to

the tip good flutter records were obtained.

bDivergence.

It will be noted in the table that all the calciLlated flutter

speeds are within 7 percent of the experimental values and the calculated

frequencies and reduced speeds are within 15 percent of the experimental

values. The calculated flutter speeds are generally slightly higher than

the experimental values for _l_17 and slightly lower for Z1 >_46.

There is no such consistent trend in the other parameters.

In figure i the ratio of both calculated and experimental flutter

speeds for the wing with a weight to the flutter speed of the wing with-

out a weight are plotted against span position of the weight. The

important thing to note in examining figure i is that the shape of the

theoretical curve follows the shape of the experimental curve very

closely in the regions where experimental flutter was ebtained. The

horizontal dashed line in figure I represents the divergence speed for

the wing as computed by the method of reference ii. Although the
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correct divergence speed for different weight positions would probably

vary, being sc_ewhat lower with the weight at the tip than at the root,

owing to the effect of the presence of the weight on aerodynamic forces,
the agreement of the approximate value with experimental values is
satisfactory.

General expressions for the deflection curves are derived in

appendix B from which amplitudes and phase angles for curves of deflection,

slope, moment, and shear in bending and amplitudes and phase angles for
curves of angular deflection and torque in torsion can be computed. The

phase angles and amplitudes for the deflection and shear curves in bending
(fig. 2) and the phase angles and amplitudes for the angular displacement
and torque in torsion(fig. 3) have been computed with reference to a

unit tip deflection for the weight position _l = 17 inches. In figure 4
the amplitudes in deflection and shear in bending from figure 2 are
compared with the deflection and shear curves due to the fundamental

uncoupled bending mode of the wing, and in figure 5 the amplitudes in

angular deflection and torque in torsion from figure 3 are compared with
the angular deflection and torque curves due to the fundamsutal uncoupled

mode in torsion. There is a notable difference in the shape of the

amplitude curves computed by the present method and those computed from

the first normal modes. This discrepancy indicates that several modes

would have to be employed to obtain satisfactory results by the Rayleigh
type analysis.

CONCLUDINGP_NARES

The method discussed in this paper is not limited to a uniform

cantilever wing with a single weight. By proper attention to the boundary

conditions the theory can quite easily be extended to apply to a uniform

wing carrying any number of arbitrarily placed weights, one of which
might be considered as a fuselage and made to yield the so-called

symmetric and antisymmetric types of flutter. Furthermore, for conven-

ience of application, theoretical values of two-dimensional air forces

have been used. However, since the method does not depend on the

particular form of air forces involved, any known or available aero-

dynamic data could be used. In any event, the method is tedious and

would, therefore, not be recommended over the Rayleigh type analysis
when it might be known that only the first few normal modes of the

structure are sufficient to give satisfactory results.

For wings that are not uniform the differential equations for

flutter conditions reduce to ordinary differential equations with

variable coefficients. In this case the solution would, in general, be
much more difficult to obtain. For general cases there would be no

advantage in the operational method of solution although an iterative

process probably might be used to great advantage.
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In conclusion it is pointed out that the location of such masses
as engines, landing gears, and fuel tanks might be used to advantage in
increasing the flutter speed of a given wing. As shown by the particular

problem analyzed herein and by other experiences a definite region exists,

peculiar to a given wing, in which masses added forward of the elastic
axis of the wing tend to increase the flutter speed of the wing.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va., November 30, 1948
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APPENDIXA

0UTLINEANDEXTENSION0FMETHODS 0FFLUTfERANALYSIS

AS PRESENTED IN REFERENCES 3AND4

i. Derivation of the Differential Equations That Govern

the Motion of a Wing at Flutter Speed

Consider a spanwise element of incremental length dx at station

of a wing oscillating in bending and torsion in a free stream of fluid
(see sketch).

X

f

Wind

direction
Station x

The displacements Y and e of an element of the elastic axis are

functions of x and t. In order that this element remain in dynamic

equilibrium the external forces and moments on the element must balance

the inertia forces and moments.

The external forces and moments consist of transverse shearing

forces and torsional moments, which are transmitted from one element of

the wing to the next, plus the aerodynamic lift force and pitching
manent and internal or structural damping. Structural damping is not

taken into consideration in this discussion, although its inclusion

would add no computational difficulties.
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The transverse shearing foroe acting upward at x is

N = -EI b _3y (A1)

and that acting downward at (x + dx) is

Similarily the nose-down torsional moment acting at x is

(A3)
T =GJ_-_

and at (x + dx) the nose-up torsional moment is

_T _e _2e

The two-dimensional aerodynamic forces acting on an element dx of an

oscillating airfoil have been derived by Theodorsen (reference 8) and

can be written as a lift force and aerod_c moment acting about the

elastic axis of the wlng# respectively, a_

L dx=(_LyY+_Ly ' 8Y a_2Le@ +_Le' 8_'_D)+

The inertia force of the element dx can be written

<m 8_Z" me I 82_e_ix

and the inertia moment as

_t2 3t2j

(A7)

(A8)
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Diagrams of the forces and moments acting on an element of wing of
length dx at station x are as follows:

N _Ldz

Imposing the conditions of d_mamlc equilibrium of the element at x by

equating inertia forces to external forces and inertia momsnts to external

mo_nsnts gives the two differential equations that govern the motion of

the wing:

b2y b2e
_ , bY + _2Lo_ + _L° ,m + reel -EZb + LyY+bt2 bt2

(Ag)

2. Boundary Conditions for a Uniform Cantilever Wing Carrying

an Arbitrarily Placed Weight at Flutter Speed

The boundary conditions that must be imposed upon equations (Ag)

for a uniform cantilever wing are

(i) Y(O,t) = 0

(2) Elbi_x Y(x,t)L = 0
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(3) @ (O,t) = 0

(4) EIb[_2A Y(x,t_ =0
L_ x=z

(5) EIb $_x3Y(x'tl =0

(6) GJ[_ x @(x,t ! =0
x=-_

These are the usual conditions that must be imposed on a vibrating canti-
lever beam. Condition (1) is the condition that the end at x = 0 is

supported (either hinged or built in). Conditions (2) and (3) imply

that this end is fixed or built in. Conditions (4), (5), and (6) imply,

respectively, that there is no bending moment, transverse shearing force,

or torsional moment acting at the tip x = Z.

If there is an arbitrarily placed weight on the wing, other condi-
tions must be imposed that will determine the effect of the weight upon

the motion of the wing. If the weight is considered as concentrated at

some point on the chord line at station x = _i, it will create discon-
tinuities in both transverse shear and torsional moment. The magnitude

of these discontinuities are _mo_n functions of the mass of the weight,

the location of the weight, and the acceleration of the wing. The
remaining conditions required to complete the boundary-value problem for

the general motion of the weighted wing are, therefore,

(7)
Elb_I_xB3 Y(x, tl "V_B Y(x,t_ _

:_(h_o) L a_3 "x--(_l_)J

W--w[82 Y(x,t) _2 tlgL t2 ÷ eCx,

(8)
GJ_x ®(x' t)]x=( _I_0) -[_x Q(x'tlx=(.Zl+O)

[e _ Y(x,t)=- 2_-_
+ _ Tt2 dx,t) =h
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For the purpose of flutter analysis it is assumed that the motions

in both bending and torsion are harmonic and that the frequencies in

bending and torsion are equal. Therefore, only the particular form that

the solution to the boundary-value problem has when these conditions

obtain need be sou6ht. These conditions imply that Y(x,t) and 8(x,t)
are of the forms

Y(x,t) = y(x)ei_t_

@(x,t) 8 (x)eJ_OtJ (A10)

wher_ on the rlght-hand side of equations (A10_ y and @ are now

complex amplitude functions of the span coordinate x from which the

shape and phase relation of the wing at any fixed time during flutter
can be obtained.

If the values of Y and @ from equations (A10) are substituted

into both differential equations (Ag) and into the boundary conditions,

the problem is greatly simplified. The differential eguatlons become

independent of t and appear as ordinary differential equations with

constant coefficients. After making the substitution and rearranging

terms, the eg_tlons of motion can be written as

J

or more simply as

dx c_- =

d28 + 7Y + 88 0

(_2)
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The boundary conditions also become independent of t and can be written
as follows :

(l') y(O) = 0

,(2') y'(o) = o

(3') e(o) : o

(4') y"(z) : o

(5') y"'(z) = o

(6') e'(z) = o

(7') EIb_'''(7,1 - O)
L - y"'(z$+ o

(8')

3. Solution of Boundary-Value Problems in Ordinary Differential

Equations by Operational Methods and Application to a Beam

Carrying an Arbitrarily Placed Weight

The boundary-value problem given by equations _A12) and conditions (i')

to (8') can be solved by straightforward methods of solving ordinary
differential equations with constant coefficients. The operational

method, however, is a much easier and shorter approach, particularly in
view of the discontinuities in shear and torque.

Briefly, the solution of a boundary-value problem by operational
methods consists of applying the laplace transform to the differential

equations, the initial conditions (root conditions when applied to beam

problems), and certain forms of other boundary conditions; of solving
the resulting system for the transform of each dependent variablej and

then by applying the inversion integral to the results. The remaining
boundary conditions are then used to set up relations among whatever

undetermined parameters that might remain.

In the case of flutter analysis a complete solution to the equations

is not needed but only the conditions under which an unstable equilibrium
may exist. The relations that can be set up between the undetermined

parameters correspond precisely to this condition. In other words these

relations appear as a system of hc_ogeneous equations and the satisfaction
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of the condition that this system of equations have a ccmnonsolution
other than the trivial solution corresponds to the border-line Condition
separating the _mpedand undampedoscillations of the wing.

The Laplace transform of f(x) is

 )}foL (x = e"sx f(x) dl = f(s) (A 3)

where s may be real or complex and x >0. The sufficient conditions

that this infinite integral exist are that f(x) have no infinite discon-

tinuities for x 20 and that f(x) be of exponential order as x--_ •

(See reference 9.) In other words finite discontinuities such as those

appearing in the foregoing problem do not invalidate the operatiorml
approach.

The Laplace transform of the nth derivative of a coatinuous

function with continuous derivatives, for which the function and all its

derivatives are of exponential order, can be obtained directly from
equation (A13) as

L[fn(x)} = snT(s) - sn'if(o)- sn-2f'(0)-...- fn-l(0) (A14)

The Laplace transform is linear in the same sense as differentiation

or integration. That is, if ai and bi are constants

LIanfn(x) + an_ifn-l(x) + • • • + aof(X) + bmSm(x)+... + boe(X)}

(A 5)

Thus the Laplace transform of a linear differential equation with constant

coefficients is generally a sum of expressions similar to equation (A14).
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f'(o)  n-i(o)In equation (Al_) the quantities f(O), , • • • ,

are the boundary conditions at the origin of the dependent variable

(wing root) that corresponds to constants of integration. When these

quantities are given they are put directly into the transformed equation.

When the quantities are not given they correspond to what has been

called undetermined _ters in the preceding paragraphs and must

later be determined in terms of other boundary conditions.

Finite discontinuities in a function or any of its derivatives

are taken into account by proper attention to the limiting values that
the function or its derivatives have on the two sides of the disconti-

nuity. In particular, if a function and its first n derivatives are

of exponential order, if the first (n - 2) derivatives are continuous,
if the (n - l) st derivative has a finite discontinuity at Xo, and if

the nth derivative is continuous except for a singular point at Xo,
(see sketch)

and

fn-l(x)

the Laplace transform of the nth derivative has the form

L_n(x)} = sn{(s) - sn'if(o) - . . .

- sfn-2(0) - e-SXoLfn-l(x O + 0) - fn-l(xo - 0)_
(AI6)

where f(x o + O) is the value of f(x) as x approaches xo from the
right and f(x o - O) is the value of f(x) as x approaches xo from
the left. In other words the terms in the brackets express the magnitude

of the discontinuity in fn-l(x) at xo in the (n - l) st derivative

at xo.
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An examination of the boundary-value problem, equation (A12), shows
that the transform will be given by a sumof expressions precisely of
the form of equation (A16).

In order to interpret the transformed function f(s) in terms of
the original function f(x), use may be made of the inversion integral
discussed in text books on operational calculus_ or one may refer
directly to tables of transform,

As a simple example the operational msthod is applied to a canti-
lever beamcarrying an arbitrarily placed weight and assumedto be
vibrating in a vacumnin bending onlyo

The boundary-value problem for this case can be written

(AI7)

(a)

(b)

(o)

y(0)=y'(0)= 0

y"(O = z'"('O = o

E_b_"'(_x- o)- y'"(zi'+4=

I

W_2gy(_l)j

(_8)

where the symbols have the same meaning as in equation (AI2).

If the root conditions (a) and the boundary condition (c) are used,

the transformed problem solved for _(s) gives

_-(s) = s_ - _4+ s_ - _ + _ s_ - o._

where, for brevity, Y2 : yVV(O), Y3 = yVVV(o), and _4 _ _ib2.
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The inverse transform of equation (AI9) is (see pair nos. 31

and 32, p. 296, and relation 12, p. 294, of reference 9)

y(x) = osh ax - cos + Y--_-!sinh ax - sin _xl

+

2_3g_i$(zz) . - h) - sin -
(_o)

or

y(_) = osh=- cos +_(si_ = - sin

w_.-_-_ -Y2 (cosh _h - cos _h)

Y+ J-$-:(sinh _i - sin cd a(x - _i)
2_Jk

(A21)

where the last bracket is zero when x - _i<0.

Imposing bounda_v7 conditions (b) gives two homogeneous equations

in Y2 and Y3" Each value of _ that will cause the determinant of

the coefficients of 3[2 and Y3 to vanish corresponds to a mode of
vibration.

This result has been applied to the wlngandweight discussed in

the text of this paper with the weight located 17 inches from the root.
The deflection and shear curves due to the first uncoupled modes in

bending only have been computed and are plotted in figure 6. Corre-

sponding results have been computed by a 20-station process of iteration
discussed in reference 12 and plotted in the same figure.
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form

4. Representation of the Inverse Transform of the Boundary-

Value Problem, Equation (A12)j by a Power Series

The transform of both y(x) and e(x) of equation (A12) are of the

PiCs) P2(_)
fCs) = _ + _ e'_ _ (_.2)

where Pl(S) and P2(s) are polynomials both of lower degree than q(s).
Neither Pl(s) or P2(s) have cc_mon factors with q(s) where q(s) is

of the specific form

(_3)

where the coefficients a, b, and c and the roots squared R1, R2,

and RB are complex. The inverse functica associated with such a
transform gives f(x) in terms of circular and hyperbolic functions

of x_Hi, but with the results in this form the process of solving the

flutter determinant becomes very cumbersoms.

By making use of the properties of symmetric functions, Goland and
Luke (reference 4) outlined a simple method of obtaining series expansicas

for the transforms of equations _A12) that does not involve the

meticulous task of finding the roots of q(s). The inversions of these

expansions give y(x) and e(x) in the form of convergent series.

For the development of these series it is first necessary to cca-

sider q(s) as a cubic in s2; namel_,

_- _- ( - (._.4-)

By making use of the binomial theorem_ i/q(s) can be written as

_ Ri Ri2 ,+ Ri B .)
I 317 + + +

=_1 _ 7 sT "" (_.5)



NACA TN Noo 1848 29

Equation 0%25) is independent of any interchange of the parameters RI, R2,

and R 3 and thus satisfies the description of a sy_n2tric function in
these parameters. (For a discussion of symmetric functions see refer-

ence lO or any text on higher algebra or theory of equations.) If the

indicated multiplication in equation (A25) is carried out, the results

can be written

V_ T1 T2 Tn ._
i I T +__+ + . + + . .+Te-cr: o s2 ''

where the general term Tn represents the sum of all possible symmetric

polynomials in R1, PC, and R 3 which are of degree n and with all

coefficients unity. By making use of Newton's identity relative to

symmetric polynomials, that is

Tn = -aTn_ I - bTn_ 2 - cTn_ 3 (#27)

where the value of any T_ _ is to be disregarded when n - J < 0,

every Tn can be written in terms of the coefficients a, b_ and

equation 0%23)9 for example,

c of

TO =l

T1 = -a

T2=a2 -b

T3 = -a 3 + 2ab - c

(A28)

ltloo

With the aid of equation (A26) and equations (9) and (i0) of the

text the inverse transform of equation (A22) or of y(s) and @(s) can

therefore be written as a sum of terms of the type given in equations (9)

and (10) where the Tn'S enter as coefficients in the numerator and are

easily evaluated in terms of the coefficients of a known cubic equation.

In the application to flutter analysis only the first few Tn's are

usually necessary because the resulting series is generally found to be

highly convergent.
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APPENDIX B

DERIVATION OF THE FLUTI_R D_A_NDSAMPLE CALCULATIONS

Introduction

In this section the flutter determinant is formally derived and

the method described in the text for solving the determinant is

illustrated with sample calculations for a specific example. Also final

expressions for the deflection curves are given from which amplitude and

phase angle curves of deflection, shear, and torque are calculated for
a specific case. The calculated amplitudes are ccmpared with corre-

sponding curves computed from the fundamental uncoupled modes in bending
and torsion.

Derivation of the Flutter Determinant

In equations (ll) and (12) of the text it is first necessary to

evaluate the expressions

_"'(Zl - o) - y'"(Zl+ 0)]

and

'(z1-o) - e'(Zl+ o)]

in terms of Y2, Y_, and eI . Since terms involving (x - Ii) drop out
of both equation (ll) and equation (12) for x = _l, the values of y(Z1)
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and e(Zl) ,;an be obtained directly from these equations. The values

of Y(_l) and e(Z1) substituted into conditions (c) and (d) of the text

give the desired relations; namelyj

y'"(k- o) - y'"(h + o) = ww_ _(h)+ _e(zl)IEIbg

w_ 2 [- 0.
Elb---__2 _(5 - e,2_,)_ -- Tn_12n+4(2n + 4)'

n=0

+
_nZ12_+O 7

(2n +2)_+ Y3[ (8 " e27)- f_
n=O n=O

+ - Tnll2n+3 7

n=O

co Tn_12n+5+ e 1 8 - e2e.) _-_/ (2n 5)'+

n--O

+ e2

O0

n=O
(2n + l)

(B1)
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and

e'(h - o) - e'(zl+ o) = _g--g

_--_g_2 Tn_12n+4= Ee,25 - K2_.2) 7--(2n + 4) ;
n=O

+ e2 Z___ (2n + 2)
n=O

_e2 _ _nh2n+5+ Y3 8 - _2_,) (2n + 5)'
n=o

® Tn_#n+3 q

n=O

g+ el. 13- ZT,22_)
Tn_n+5

(2n + 5)'

® Wn_l_n+l]I

+ Re2g (_ + 1)'JJ
(m)

Substituting equations (BI) and (B2) into equations (ii) and (12)
gives

y(x) = hl(X)Y 2 + h2(x)Y 3 + h3(x)e I (B3)

e(x) = g](x)Y2 + _2(x)z3 + g3(x)ez (_)
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where

n-_ Tn2n+2 n_ Tn#n+_hl(X) = (2n + 2)! + 8 (2n + 4): W_ (_8 _Tnll 2n+4
+_-_ -_27) (2n + 4):

n=0

n_Tn_l 2n_2 _ _Tn_X - z02n+5 _--Tn(X- _lJ2n+3]

_W_ _ Tn_l 2n+4GJg e2 5 _ _2) (2n + 4)'

TnZ#n+'2-_ _-m--Tn_x - _i_ 2n+5+ e2 (2n + 2).'I _ (2n + 5) I•

Tnx2n+5 _--- Tn 2n+3 Wwn_ _5 n__ Tn_#n+5h2(x ) = 5 (2n + 5)' + /(2n + 3).' + E--i--_ - e'27) (2n + 5)I.
n=0 n=O

Tn(X- _i) 2n+9

(2n + 5) :

_-Tn(X - _ll 2n+3]

+ n_-=0- (2n + 3) t. J

_W'w_'_ (_e,25 - Er227) _ - Tn_12n+5"- C_Tg (2n + 5) '-
n=O

Tn?,12n+3-- I _-_-Tn<X - _i) 2n+5

+ e2Z (2n + 3)j.J _ (2n + 5) I
n=0
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TritOn+5 W_2 (_ n_ Tn_l 2n+5h3(x) = (2n"+ + - e2 ) (2n + 5):
n=O

n_TnZ#n+l--_n_Tnlx- Zl)2n+5 _Tn<X - Z1)2n+3q* e2 (2n * I)L (2n * 5)' * niL_qD-(2n * 3):

K22_) (2n + 5)'
n=0

+ ]D22£ Tn'Zl 2n+l q _--_-Tn(X - 7,1)2n+5
(2n + Z).VJ/___ (2n + 5):

n=O n=O

gl(x) =-T_ Tn_n+4 W_ K2 2 TnZ#n+4
n--=0-(2n + 4)] + _ .5 - ) (2n + 4). I

+ e2 _- Tn'# n+2 I Tn<X- 'i) 2n+5 Tn(X- 'l)2n+l 7
(2n + 2)._ (2n + 5'). I - (2n + 1). I __..J

Ww_ (_ £ T:nT'12n+4 £ T:n7,#n+"2--_£T:n(X- 7,1)2n'-5
" _ - ee7) n--O (2n + 4)' + n=O (2n + 2)_n=O (2n + 5):

_n+5g2 (x) = - 7 (2n + 5) -I
n=O

W_2 (_ f TnT"#n+5+- 26 - K227) (2n + 5)'
C,Jg n=0

e2 £ Tn_#n+3q TnlX- %1)2n+5+ (2n + 3)_ _ "[2n + 9)_

n---O n=O

TnlX - _2n+l_
(2n + 1) w __j

n=O

W'_'/27__ " £ TnT"fn+5 _' TnT,12n.3- t _-TnlX- 7,1_2n+5
- EI_ o - e27 ) (2n + 5)' +_-- (2n + 3)!] n_ ' _2n + 5)'

n=O n=O
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and

TnX2 n+l n_ Tnx2n+5g3 (x) = nL_ (2n + 1): " _ (2n + 5): W_2 I n_ TnZl 2n+5+ _ e2P - K22m) (2n.+ 5). v

D22_--" TnZI 2n+l] TnQX- _I) 2n+5 Tn_X- _l_2n+l_+

= (2n + 1).]] ""(2n + 5): - _ (2n + 1): _J

£ Tn_12n+5e2(_) (2n + 5)'

n=O

+ (2n -I'- i) n.j
n=O

- '0
(2n + 5) :

n=O

By imposing conditions (b) of the text

y"(z)= y'"(_)= e'(_)= o

upon equations (h3) and (B4), three equations are obtained (written in ths

text as equation (13)):

AiY 2 + BiY 3 + Cie I = 0

where i = I, 2, and 3 and

A 1 = hl''(Z ) B 1 = h2''(_ ) C1 = hB''(Z )

A2 = hl'''(Z) B2 = h2'''(z) C2 = h3'''(Z)

A3 = glv(Z ) B3 = g@v(_) C3 = g3V(z )
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Imposing the condition that the equations (13) have a solution

other than the trivial solution Y2 = Y3 = el = 0 results in the flutter

determinant

n

AI BI CI

c2

A 3 B 3 C3

= o (Bg)

Sample Calculation of Flutter Speed

and Deflection Curves

A method of solving the flutter determinant given in the text is

illustrated here by the solution of the determinant for the wing-weight
combination discussed in the text when the spanwise location of the

weight is 17 inches from the root. The values of v 1
_ =_ that are

chosen are in the neighborhood of the experimental value and have

available tabulated values of Theodorsen's function C(k) = F + iG.

Table I shows the aotual computations required to evaluate the

coefficients Ai, Bi, and Ci for v__ =b_ 7.1429 (k = 0.14) and two

values of --% = f (f = 25 cps and f = 28 cps). From columns _,2_

and _. the determinant for f = 25 cps is

(14.9200 - 2.8574i)

(11.8000 - 3.66951)

(0.17030 - 0.66134i)

(12.8320 - 2 .o315i)

(10.297o - 2.8566i)

-(0.09o77 + o.593hli)

-(7.3286 - 0.60021i) I
i

-(5.4711 - 0.93233i) I
i

-(0.41138 - 0.28864i)1

or

a = i.o326 - o.69h81
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Similarly, for f = 28 cps,

A

(18.6380- 3.8115i)

(15.5930 - 5.0935i)

-(0.04177 + 0.87098i)

(15.0860 - 2.6399i)

(13.0080 - 3.7946i)

-(0.23526 + 0.759481)

-(9.1238 - 0.85433i)

-(7.1158 - 1.3988i)

-(0.51403 - 0.370171)

or

A =-0.4029- 0.0312i

The determinant was evaluated in this manner for the same value

of v/b_ and several other values of f. The process was then repeated
v

v - 6.25 and several values of f and for b_for b_ -- = 5.00 and several

values of f. The real and imaginary parts of the evaluated determinant

for each value of v/b_ and the corresponding values of f are separately

plotted in figure 7. The ordinates of the intersections of the different

pairs of curves of real and imaginary parts were scaled in figure 7 and

plotted as A e against both v/b_ and f in fi_U_v 8. The zero

ordinates of these curves give the value of v/ko[_ = 6.93) and the

values of f(f = 28.04 cps) for which the determinant vanishes. From

these values the flutter speed is readily calculated to be

v = (b_) (6.93) = (2_bf) (6.93) = (2_) (28.04) (6.93)" = 407 fps
3

As pointed out in appendix A the deflection curves at any specified
time are given by equations (AlO)

Y(x,t) = y(x)e i_t = y(x)(cos et + i sin _t)

8(x,t) = e(x)e Smt = e(x)(cos (ot + i sin _t).

where final forms of y(x) and e(x) are given by equations (B3) and (B4)

and where, at least, the relative values of the undetermined coeffi-

cients Y2, Y3, and eI in equations (B3) and (B4) must be known. If
the set of values of v/bm and _ that satisfy the flutter determinant

is used to determine the coefficients Ai, Bi, and Ci in equations (13),
there is obtained a system of three homogeneous equations in the three

unknowns Y2, ][33 and eI that have solutions other than the trivial

solutions Y2 = Y3 = el = o. If these equations are each divided

through by any one of the unknowns, say Y2, there is obtained a
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consistent system of three equations in the two ratios YI/Y2 and el/Y 2.
Any two of the three equations can therefore be solved for these ratios.
Consequently, equations (B3) and (B4) can be written with one undetermined
parameter that appears as a factor in each equation. Furthermore, since
the coefficients Ai, Bi, and Ci are complex numbers the ratios Y1/Y2
and el/Y 2 are complex numbersand equations (B3) and (B4) contain
complex coefficients. The real and imaginary parts of these equations
can be separated and the equations written

y(x)=Y2 l(X)+ iy2(x)  

e(x) Y2 Io3( )-1] (B6)
If these relations are substituted into equations (AIO),

Y(x_t) =Y2_Yl(X)COScot- Y2(X)slncot + l_2 (x)cos cot + Yl(X)slnco_

e(x,t) = Y2_2(x)cos cot - O3(x)sin cot + i_3(x)cos cot + 02(x)sin co_ (B7)

or

Y(x,t) = Y2 _iCx)_ 2 cos(cot+ q_l) + i sin(cot+ _i_

(Be)

where

ml = tan-Z y_(x)

and

q)2 = tan-I _
e2 (x)
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and where _l " _2 represents the difference in phase angle between
bending motion and torsion motions at x.

The real parts of equations (B8) are interpreted to mean the motions

in bending and torsion taken in a positive sense. The imaginary parts

can then be interpreted as representing these same motions with a phase
shift of _/2 radlans.
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Figure i.- Comparison of calculated and experimental flutter speeds for

a particular wlng-welgmt system.
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1.2 3o

Distanoe along span, in.

Figure 2.- Plot of amplitude and phase angle of displacement and shear

curve in bending at flutter for I1 = 17 inches (amplitude and shear

referred to unit amplitude at tip in bending).
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Figure 3.- Plot of amplitude and phase angle of torsional displacement

and torque for _l = 17 inches at flutter (amplitude and torque

referred to unit amplitude at tip in bending).
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Figure 4.-- Plots of amplitudes in bending displacement and torque and

the corresponding curves computed for the first uncoupled normal mode

in bending for _l = 17 inches (amplitude and shear referred to unit

amplitude at the tip in bending).



48 NACA TN No. 1848

2o0
' ' ' 1 ! ! v

Computed by present meth_
Computed from first no_l model

! A L

1.6 J

/
/

i

1.2 /At, i
Amplitude

: .... "- .'i // ,1,,_,--i -
,8 /

4-

e_ f

l

/ . ,. i Torque- \

\
lo 20 30

Distanoe along span, in.

5O

Figure 5.- Plots of amplitudes in torsional displacement and torque and
the corresponding curves computed for the first uncoupled normal mode

in torsion for iI = 17 inches (amplitude and torque referred to

unit amplitude at tip in bending).
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